organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,4,6,8-Tetrakis(4-fluorophenyl)-3,7diazabicvclo[3.3.1]nonan-9-one

S. Natarajan,^a V. Sudhapriya,^b V. Vijayakumar,^b N. Shoba,^c J. Suresh^c and P. L. Nilantha Lakshman^d*

^aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, ^bDepartment of Chemistry, VIT University, Vellore 632 014, India, ^cDepartment of Physics, The Madura College, Madurai 625 011, India, and ^dDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka

Correspondence e-mail: nilanthalakshman@vahoo.co.uk

Received 17 November 2008; accepted 21 November 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.112; data-to-parameter ratio = 12.7.

In the title compound, $C_{31}H_{24}F_4N_2O$, the bicyclo[3.3.1]nonane ring exists in a chair-boat conformation. Two of the four fluorine-substituted rings adopt equatorial dispositions with the piperidin-4-one rings. Molecules are linked into a twodimensional network parallel to (101) by N-H···O, C- $H \cdots F$ and $C - H \cdots O$ hydrogen bonds. Intermolecular N- $H \cdots \pi$ and $C - H \cdots \pi$ interactions are also observed.

Related literature

For general background, see: Asakawa (1995); Jeyaraman & Avila (1981).

Experimental

Crystal data

CarHarErNaO	$V = 5069.5 (4) \text{ Å}^3$
$M_r = 516.52$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 37.1521 (9) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 7.1458(5) Å	T = 293 (2) K
c = 26.2165 (7) Å	$0.19 \times 0.16 \times 0.11$
$\beta = 133.249 \ (4)^{\circ}$	

Data collection

Nonius MACH-3 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.986, T_{\max} = 0.991$ 5315 measured reflections 4465 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	
$wR(F^2) = 0.112$	
S = 1.02	
4465 reflections	
351 parameters	

radiation 0 mm^{-} 3 (2) K $0.16 \times 0.11 \text{ mm}$

2735 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.024$ 2 standard reflections frequency: 60 min intensity decay: none

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15−H15···F4 ⁱ	0.93	2.52	3.254 (3)	136
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C3−H3···O1 ⁱⁱ	0.98	2.56	3.358 (2)	138
N1-H2 $A \cdots Cg^{3^{iv}}$ 0.89 (2) 2.70 (3) 3.549 (3) 160 (2) C36-H36 $\cdots Cg^{2^{v}}$ 0.93 2.81 3.696 (3) 160 C42-H42 $\cdots Cg^{1^{v}}$ 0.93 2.78 3.651 (3) 157 C45-H45 $\cdots Cg^{3^{iii}}$ 0.93 2.65 3.494 (3) 151	$N2-H1A\cdotsO1^{iii}$	0.86(2)	2.53 (2)	3.292 (2)	148 (3)
$C36-H36\cdots Cg2^{v}$ 0.932.813.696 (3)160 $C42-H42\cdots Cg1^{v}$ 0.932.783.651 (3)157 $C45-H45\cdots Cg3^{iii}$ 0.932.653.494 (3)151	$N1 - H2A \cdots Cg3^{iv}$	0.89 (2)	2.70 (3)	3.549 (3)	160 (2)
$C42-H42\cdots Cg1^{v}$ 0.93 2.78 3.651 (3) 157 $C45-H45\cdots Cg3^{iii}$ 0.93 2.65 3.494 (3) 151	$C36-H36\cdots Cg2^{v}$	0.93	2.81	3.696 (3)	160
$C45 - H45 \cdots Cg3^{iii}$ 0.93 2.65 3.494 (3) 151	$C42 - H42 \cdots Cg1^{v}$	0.93	2.78	3.651 (3)	157
	$C45 - H45 \cdots Cg3^{iii}$	0.93	2.65	3.494 (3)	151

Symmetry codes: (i) -x, -y + 2, -z; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) x, y - 1, z; (iv) x, -y + 1, -z; (v) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$. Cg1, Cg2 and Cg3 are the centroids of the C31-C36, C41-C46 and C61-C66 rings, respectively.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

SN thanks the DST for the FIST programme.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2727).

References

- Asakawa, Y. (1995). In Progress in the Chemistry of Organic Natural Products, edited by G. W. Moore, R. E. Steglich & W. Tamm. New York: Springer-Verlag.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands

Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2008). E64, o2496 [doi:10.1107/S1600536808039135]

2,4,6,8-Tetrakis(4-fluorophenyl)-3,7-diazabicyclo[3.3.1]nonan-9-one

S. Natarajan, V. Sudhapriya, V. Vijayakumar, N. Shoba, J. Suresh and P. L. N. Lakshman

Comment

Azabicyclononane and their derivatives are studied intensively because of their pharmaceutical use and their application as an important structure in the field of molecular recognition. The 3-azabicyclo[3.3.1] nonane skeletal system easily constructed *via* a double Mannich reaction (Jeyaraman & Avila, 1981), has been known for some time. The bicyclo[3.3.1]nonane carbon framework is frequently encountered in natural products, in particular in alkaloids and terpenoids, *e.g.* trifarienols (Asakawa, 1995). Further, the study of conformation of the bicyclic ring helps in the understanding of interactions that are possible between the substituted aryl rings.

The molecular structure of the title compound is shown in Fig.1. The bicyclic [3.3.1]nonane ring can exist in chair-chair, chair-boat and boat-boat conformations. Among these, the chair-chair conformation is the most favourable. In the title compound, the bicyclic ring system adopts a chair-boat conformation. In the N1-piperidine ring of the compound, atoms N1 and C7 deviate from the C1/C2/C5/C6 plane by 0.652 (3) and 0.685 (3) Å, respectively, indicating a nearly ideal boat conformation. The phenyl rings substituted at C1 and C6 positions are oriented at an angle of 28.2 (1)° to each other. The phenyl rings substituted at C3 and C4 are oriented with an angle of 28.6 (1)° between them and they are equatorially disposed with respect to the piperidine ring, with torsion angles C7—C5—C4—C41 = -175.1 (2)° and C7—C2—C3—C31 = 173.3 (2)°.

Fig. 2 shows the packing viewed down the *c* axis. Pairs of intermolecular C—H…F (Table 1) hydrogen bonds form centrosymmetric $R_2^2(24)$ dimers. The moelcules are linked into a two-dimensional network parallel to the ($\overline{101}$) by N—H…O, C—H…F and C—H…O hydrogen bonds. In addition, some C—H… π interactions (Table 1 ; Cg1, Cg2 and Cg3 refer to centroids of C31-C36, C41-C46 and C61-C66 rings, respectively).

Experimental

A mixture of 0.73 ml of dry acetone (0.01 mol), 4.96 ml of 4-fluorobenzaldehyde (0.04 mol), 1.54 g dry ammonium acetate (0.02 mol) were taken in a flask with ethanol as solvent. Contents were heated with constant shaking until it becomes pale orange in colour. Then the contents were kept aside for 24 h and the title compound was filtered through the Buchner funnel, washed with 1:1 ethanol-ether mixture until the yellow colour disappeared and dried (yield 45%, m.p. 484 K).

Refinement

Atoms H1A and H2A were located in a difference Fourier map and their positional and isotropic displacement parameters were refined. The remaining H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C-H = 0.93-0.98 Å and $U_{iso} = 1.2U_{eq}(C)$ for CH group.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

2,4,6,8-Tetrakis(4-fluorophenyl)-3,7-diazabicyclo[3.3.1]nonan-9-one

Crystal data	
$C_{31}H_{24}F_4N_2O$	$F_{000} = 2144$
$M_r = 516.52$	$D_{\rm x} = 1.353 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, C2/c	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 25 reflections
a = 37.1521 (9) Å	$\theta = 2 - 25^{\circ}$
<i>b</i> = 7.1458 (5) Å	$\mu = 0.10 \text{ mm}^{-1}$
<i>c</i> = 26.2165 (7) Å	T = 293 (2) K
$\beta = 133.249 \ (4)^{\circ}$	Block, colourless
$V = 5069.5 (4) \text{ Å}^3$	$0.19\times0.16\times0.11~mm$
<i>Z</i> = 8	
Data collection	

Nonius MACH-3 diffractometer	$R_{\rm int} = 0.024$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.1^{\circ}$
T = 293(2) K	$h = 0 \rightarrow 44$
ω -2 θ scans	$k = -1 \rightarrow 8$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -31 \rightarrow 22$
$T_{\min} = 0.986, \ T_{\max} = 0.991$	2 standard reflections
5315 measured reflections	every 60 min
4465 independent reflections	intensity decay: none
2735 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.112$	$w = 1/[\sigma^2(F_o^2) + (0.0552P)^2 + 1.3466P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
4465 reflections	$\Delta \rho_{max} = 0.14 \text{ e} \text{ Å}^{-3}$
351 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods returning a construction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.11845 (6)	0.4616 (3)	0.20424 (9)	0.0401 (5)
H1	0.1151	0.3251	0.2002	0.048*
C2	0.17256 (7)	0.5147 (3)	0.24318 (10)	0.0385 (4)
H2	0.1871	0.5885	0.2850	0.046*
C3	0.20558 (6)	0.3394 (3)	0.26425 (9)	0.0378 (5)
Н3	0.2379	0.3838	0.2838	0.045*
C4	0.18263 (7)	0.3426 (3)	0.15308 (9)	0.0377 (4)
H4	0.2166	0.3848	0.1798	0.045*
C5	0.14991 (6)	0.5202 (3)	0.12939 (9)	0.0371 (4)
H5	0.1508	0.5974	0.0994	0.044*
C6	0.09512 (6)	0.4758 (3)	0.09015 (9)	0.0398 (5)
H6	0.0897	0.3403	0.0836	0.048*
C7	0.17300 (7)	0.6262 (3)	0.19522 (10)	0.0386 (5)
C11	0.10312 (7)	0.5332 (3)	0.24153 (10)	0.0430 (5)
C12	0.11071 (9)	0.4228 (4)	0.29154 (12)	0.0621 (6)
H12	0.1258	0.3067	0.3025	0.074*
C13	0.09628 (10)	0.4816 (4)	0.32551 (13)	0.0711 (7)

H13	0.1017	0.4068	0.3593	0.085*
C14	0.07391 (8)	0.6514 (4)	0.30841 (12)	0.0571 (6)
C15	0.06615 (8)	0.7656 (3)	0.26035 (12)	0.0564 (6)
H15	0.0512	0.8817	0.2500	0.068*
C16	0.08102 (8)	0.7055 (3)	0.22704 (11)	0.0504 (5)
H16	0.0760	0.7829	0.1941	0.060*
C31	0.21368 (7)	0.2239 (3)	0.31941 (9)	0.0394 (5)
C32	0.18761 (7)	0.0614 (3)	0.30531 (11)	0.0476 (5)
H32	0.1646	0.0158	0.2597	0.057*
C33	0.19552 (8)	-0.0333 (3)	0.35830 (12)	0.0531 (6)
H33	0.1778	-0.1413	0.3486	0.064*
C34	0.22973 (8)	0.0344 (3)	0.42487 (11)	0.0520 (6)
C35	0.25679 (8)	0.1928 (3)	0.44138 (11)	0.0526 (6)
H35	0.2801	0.2361	0.4873	0.063*
C36	0.24843 (7)	0.2856 (3)	0.38825 (10)	0.0462 (5)
H36	0.2666	0.3929	0.3987	0.055*
C41	0.16646 (6)	0.2296 (3)	0.09174 (9)	0.0377 (4)
C42	0.17840 (7)	0.2953 (3)	0.05514 (10)	0.0486 (5)
H42	0.1964	0.4056	0.0697	0.058*
C43	0.16441 (8)	0.2022 (3)	-0.00210 (11)	0.0572 (6)
H43	0.1725	0.2483	-0.0263	0.069*
C44	0.13822 (8)	0.0401 (3)	-0.02224 (11)	0.0552 (6)
C45	0.12559 (8)	-0.0312 (3)	0.01184 (11)	0.0550 (6)
H45	0.1078	-0.1423	-0.0031	0.066*
C46	0.13961 (7)	0.0644 (3)	0.06916 (10)	0.0476 (5)
H46	0.1310	0.0176	0.0927	0.057*
C61	0.06009 (7)	0.5723 (3)	0.01948 (10)	0.0406 (5)
C62	0.03742 (8)	0.7397 (3)	0.00973 (12)	0.0590 (6)
H62	0.0420	0.7904	0.0465	0.071*
C63	0.00812 (9)	0.8329 (4)	-0.05342 (13)	0.0697 (7)
H63	-0.0071	0.9450	-0.0595	0.084*
C64	0.00196 (8)	0.7583 (4)	-0.10652 (11)	0.0596 (6)
C65	0.02287 (8)	0.5928 (3)	-0.10022 (11)	0.0546 (6)
H65	0.0177	0.5435	-0.1376	0.066*
C66	0.05205 (7)	0.4997 (3)	-0.03665 (10)	0.0469 (5)
H66	0.0665	0.3863	-0.0315	0.056*
N1	0.08615 (6)	0.5436 (3)	0.13358 (8)	0.0448 (4)
N2	0.18264 (6)	0.2354 (2)	0.20033 (8)	0.0396 (4)
01	0.19350 (5)	0.7766 (2)	0.21027 (7)	0.0521 (4)
F1	0.05822 (5)	0.7074 (2)	0.34005 (7)	0.0799 (4)
F2	0.23818 (6)	-0.0598 (2)	0.47714 (7)	0.0775 (4)
F3	0.12520 (6)	-0.0562 (2)	-0.07769 (7)	0.0844 (5)
F4	-0.02642 (6)	0.8518 (2)	-0.16843 (7)	0.0923 (5)
H1A	0.1975 (8)	0.130 (3)	0.2109 (11)	0.057 (7)*
H2A	0.0545 (8)	0.522 (3)	0.1100 (10)	0.052 (6)*

Atomic displacement parameters $(Å^2)$

C1—H1

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0412 (10)	0.0390 (12)	0.0455 (11)	0.0006 (9)	0.0318 (9)	0.0010 (9)
C2	0.0420 (10)	0.0344 (11)	0.0438 (10)	-0.0014 (9)	0.0313 (9)	-0.0037 (9)
C3	0.0366 (10)	0.0367 (11)	0.0427 (11)	0.0005 (9)	0.0282 (9)	-0.0008 (9)
C4	0.0358 (9)	0.0366 (11)	0.0442 (11)	-0.0001 (9)	0.0288 (9)	-0.0007 (9)
C5	0.0401 (10)	0.0341 (11)	0.0429 (10)	0.0006 (8)	0.0308 (9)	0.0023 (9)
C6	0.0395 (10)	0.0392 (12)	0.0443 (10)	-0.0017 (9)	0.0302 (9)	-0.0026 (9)
C7	0.0359 (10)	0.0317 (11)	0.0527 (12)	0.0042 (9)	0.0321 (9)	0.0020 (9)
C11	0.0399 (10)	0.0480 (13)	0.0455 (11)	-0.0007 (10)	0.0309 (9)	0.0007 (10)
C12	0.0749 (15)	0.0619 (16)	0.0706 (15)	0.0213 (13)	0.0580 (14)	0.0195 (13)
C13	0.0894 (18)	0.083 (2)	0.0738 (16)	0.0217 (16)	0.0686 (15)	0.0244 (15)
C14	0.0563 (13)	0.0735 (17)	0.0589 (14)	-0.0002 (12)	0.0463 (12)	-0.0053 (13)
C15	0.0618 (13)	0.0542 (15)	0.0660 (14)	0.0085 (12)	0.0487 (12)	0.0040 (12)
C16	0.0588 (13)	0.0490 (13)	0.0573 (12)	0.0035 (11)	0.0452 (11)	0.0051 (11)
C31	0.0411 (10)	0.0378 (11)	0.0454 (11)	0.0036 (9)	0.0320 (9)	-0.0010 (9)
C32	0.0539 (12)	0.0384 (12)	0.0529 (12)	-0.0034 (10)	0.0374 (11)	-0.0054 (10)
C33	0.0688 (14)	0.0370 (12)	0.0703 (15)	0.0002 (11)	0.0541 (13)	0.0017 (11)
C34	0.0722 (15)	0.0462 (14)	0.0604 (14)	0.0155 (12)	0.0543 (13)	0.0130 (12)
C35	0.0642 (14)	0.0536 (14)	0.0472 (12)	0.0036 (12)	0.0410 (12)	-0.0026 (11)
C36	0.0526 (11)	0.0424 (12)	0.0481 (11)	-0.0034 (10)	0.0362 (10)	-0.0050 (10)
C41	0.0370 (9)	0.0359 (11)	0.0425 (10)	0.0037 (9)	0.0282 (9)	0.0026 (9)
C42	0.0570 (12)	0.0449 (12)	0.0589 (13)	-0.0065 (10)	0.0455 (11)	-0.0042 (11)
C43	0.0716 (14)	0.0621 (16)	0.0597 (13)	-0.0006 (13)	0.0535 (13)	-0.0007 (12)
C44	0.0622 (13)	0.0568 (15)	0.0434 (11)	0.0048 (12)	0.0350 (11)	-0.0062 (11)
C45	0.0626 (13)	0.0443 (13)	0.0531 (12)	-0.0088 (11)	0.0378 (11)	-0.0084 (11)
C46	0.0554 (12)	0.0427 (13)	0.0520 (12)	-0.0045 (11)	0.0397 (11)	-0.0012 (10)
C61	0.0379 (10)	0.0403 (12)	0.0447 (11)	-0.0010 (9)	0.0288 (9)	0.0001 (9)
C62	0.0704 (15)	0.0555 (15)	0.0572 (13)	0.0157 (13)	0.0462 (13)	0.0046 (12)
C63	0.0783 (17)	0.0603 (17)	0.0675 (16)	0.0270 (14)	0.0488 (14)	0.0153 (14)
C64	0.0550 (13)	0.0605 (16)	0.0488 (13)	0.0061 (12)	0.0300 (11)	0.0138 (12)
C65	0.0497 (12)	0.0654 (16)	0.0438 (12)	-0.0071 (12)	0.0301 (11)	-0.0051 (12)
C66	0.0432 (11)	0.0477 (13)	0.0474 (12)	0.0013 (10)	0.0301 (10)	-0.0027 (10)
N1	0.0374 (9)	0.0567 (12)	0.0455 (9)	0.0043 (9)	0.0303 (8)	0.0037 (9)
N2	0.0479 (9)	0.0329 (10)	0.0443 (9)	0.0049 (8)	0.0340 (8)	0.0024 (8)
01	0.0620 (9)	0.0362 (8)	0.0657 (9)	-0.0095 (7)	0.0467 (8)	-0.0059 (7)
F1	0.0926 (10)	0.1006 (12)	0.0882 (10)	0.0073 (9)	0.0781 (9)	-0.0025 (9)
F2	0.1203 (12)	0.0641 (9)	0.0821 (9)	0.0118 (8)	0.0825 (10)	0.0192 (8)
F3	0.1090 (11)	0.0841 (11)	0.0633 (8)	-0.0052 (9)	0.0602 (9)	-0.0224 (8)
F4	0.0987 (11)	0.0894 (12)	0.0591 (8)	0.0184 (9)	0.0426 (9)	0.0273 (8)
Geometric para	meters (Å, °)					
C1—N1		1.473 (2)	C32—C	233	1 384	(3)
C1—C11		1.518 (3)	C32—F	132	0.93	(-)
C1—C2		1.554 (2)	C33—C	234	1.362	(3)

С33—Н33

0.98

0.93

C2—C7	1.498 (3)	C34—F2	1.356 (2)
C2—C3	1.566 (3)	C34—C35	1.372 (3)
С2—Н2	0.98	C35—C36	1.372 (3)
C3—N2	1.459 (2)	С35—Н35	0.93
C3—C31	1.505 (3)	С36—Н36	0.93
С3—Н3	0.98	C41—C42	1.386 (3)
C4—N2	1.456 (2)	C41—C46	1.389 (3)
C4—C41	1.508 (3)	C42—C43	1.377 (3)
C4—C5	1.562 (3)	С42—Н42	0.93
С4—Н4	0.98	C43—C44	1.365 (3)
С5—С7	1.503 (3)	С43—Н43	0.93
C5—C6	1.559 (2)	C44—C45	1.361 (3)
С5—Н5	0.98	C44—F3	1.363 (2)
C6—N1	1.470 (2)	C45—C46	1.387 (3)
C6—C61	1.516 (3)	C45—H45	0.93
С6—Н6	0.98	С46—Н46	0.93
C7—O1	1.216 (2)	C61—C62	1.382 (3)
C11—C16	1.381 (3)	C61—C66	1.386 (3)
C11—C12	1.383 (3)	C62—C63	1.379 (3)
C12—C13	1.383 (3)	С62—Н62	0.93
C12—H12	0.93	C63—C64	1.356 (3)
C13—C14	1.361 (3)	С63—Н63	0.93
С13—Н13	0.93	C64—F4	1.359 (2)
C14—C15	1.356 (3)	C64—C65	1.361 (3)
C14—F1	1.360 (2)	C65—C66	1.386 (3)
C15—C16	1.383 (3)	С65—Н65	0.93
C15—H15	0.93	С66—Н66	0.93
C16—H16	0.93	N1—H2A	0.89 (2)
C31—C36	1.388 (3)	N2—H1A	0.86 (2)
C31—C32	1.390 (3)		
N1—C1—C11	109.51 (15)	C32—C31—C3	123.93 (17)
N1—C1—C2	107.55 (15)	C33—C32—C31	120.76 (19)
C11—C1—C2	112.45 (15)	С33—С32—Н32	119.6
N1—C1—H1	109.1	C31—C32—H32	119.6
C11—C1—H1	109.1	C34—C33—C32	118.8 (2)
С2—С1—Н1	109.1	С34—С33—Н33	120.6
C7—C2—C1	109.37 (15)	С32—С33—Н33	120.6
C7—C2—C3	105.39 (14)	F2—C34—C33	119.0 (2)
C1—C2—C3	112.61 (15)	F2—C34—C35	118.6 (2)
С7—С2—Н2	109.8	C33—C34—C35	122.42 (19)
C1—C2—H2	109.8	C34—C35—C36	118.1 (2)
С3—С2—Н2	109.8	С34—С35—Н35	121.0
N2—C3—C31	113.52 (16)	С36—С35—Н35	121.0
N2—C3—C2	107.60 (14)	C35—C36—C31	121.9 (2)
C31—C3—C2	111.73 (14)	С35—С36—Н36	119.0
N2—C3—H3	107.9	С31—С36—Н36	119.0
С31—С3—Н3	107.9	C42—C41—C46	118.01 (18)
С2—С3—Н3	107.9	C42—C41—C4	118.32 (17)
N2—C4—C41	113.15 (16)	C46—C41—C4	123.66 (16)

N2—C4—C5	108.19 (14)	C43—C42—C41	122.0 (2)
C41—C4—C5	112.21 (15)	C43—C42—H42	119.0
N2—C4—H4	107.7	C41—C42—H42	119.0
C41—C4—H4	107.7	C44—C43—C42	117.9 (2)
С5—С4—Н4	107.7	C44—C43—H43	121.0
C7—C5—C6	108.66 (14)	C42—C43—H43	121.0
C7—C5—C4	106.05 (14)	C45—C44—F3	118.8 (2)
C6—C5—C4	113.94 (15)	C45—C44—C43	122.6 (2)
С7—С5—Н5	109.4	F3—C44—C43	118.6 (2)
С6—С5—Н5	109.4	C44—C45—C46	119.0 (2)
С4—С5—Н5	109.4	C44—C45—H45	120.5
N1—C6—C61	109.65 (16)	C46—C45—H45	120.5
N1—C6—C5	107.95 (15)	C45—C46—C41	120.48 (19)
C61—C6—C5	110.70 (15)	C45—C46—H46	119.8
N1—C6—H6	109.5	C41—C46—H46	119.8
С61—С6—Н6	109.5	C62—C61—C66	117.84 (19)
С5—С6—Н6	109.5	C62—C61—C6	121.58 (18)
O1—C7—C2	124.21 (18)	C66—C61—C6	120.48 (18)
O1—C7—C5	123.78 (18)	C63—C62—C61	121.3 (2)
C2—C7—C5	111.69 (17)	С63—С62—Н62	119.3
C16—C11—C12	117.76 (18)	С61—С62—Н62	119.3
C16—C11—C1	122.54 (18)	C64—C63—C62	118.8 (2)
C12—C11—C1	119.69 (19)	С64—С63—Н63	120.6
C13—C12—C11	121.3 (2)	С62—С63—Н63	120.6
C13—C12—H12	119.3	C63—C64—F4	118.7 (2)
C11—C12—H12	119.3	C63—C64—C65	122.4 (2)
C14—C13—C12	118.5 (2)	F4—C64—C65	118.9 (2)
C14—C13—H13	120.7	C64—C65—C66	118.3 (2)
C12—C13—H13	120.7	С64—С65—Н65	120.8
C15—C14—F1	118.8 (2)	С66—С65—Н65	120.8
C15-C14-C13	122.4 (2)	C65—C66—C61	121.2 (2)
F1-C14-C13	118.8 (2)	С65—С66—Н66	119.4
C14—C15—C16	118.5 (2)	С61—С66—Н66	119.4
C14—C15—H15	120.8	C6—N1—C1	114.91 (15)
C16—C15—H15	120.8	C6—N1—H2A	107.3 (13)
C11—C16—C15	121.5 (2)	C1—N1—H2A	110.8 (13)
C11—C16—H16	119.2	C4—N2—C3	111.62 (15)
C15—C16—H16	119.2	C4—N2—H1A	111.2 (14)
C36—C31—C32	117.96 (18)	C3—N2—H1A	109.6 (14)
C36—C31—C3	118.09 (18)		
N1—C1—C2—C7	-1.1 (2)	C31—C32—C33—C34	-0.6 (3)
C11—C1—C2—C7	-121.79 (18)	C32—C33—C34—F2	-178.90 (18)
N1—C1—C2—C3	-117.95 (17)	C32—C33—C34—C35	-0.2 (3)
C11—C1—C2—C3	121.40 (17)	F2-C34-C35-C36	179.10 (18)
C7—C2—C3—N2	-61.43 (18)	C33—C34—C35—C36	0.4 (3)
C1—C2—C3—N2	57.74 (18)	C34—C35—C36—C31	0.3 (3)
C7—C2—C3—C31	173.32 (15)	C32—C31—C36—C35	-1.1 (3)
C1—C2—C3—C31	-67.52 (19)	C3—C31—C36—C35	177.44 (18)
N2—C4—C5—C7	59.39 (18)	N2—C4—C41—C42	-161.32 (17)

C41—C4—C5—C7	-175.09 (15)	C5—C4—C41—C42	2	75.9 (2)
N2—C4—C5—C6	-60.09 (19)	N2-C4-C41-C46	N2-C4-C41-C46	
C41—C4—C5—C6	65.43 (19)	C5—C4—C41—C46	C5—C4—C41—C46	
C7—C5—C6—N1	-3.4 (2)	C46—C41—C42—C	C46—C41—C42—C43	
C4—C5—C6—N1	114.62 (17)	C4—C41—C42—C4	C4—C41—C42—C43	
C7—C5—C6—C61	116.65 (18)	C41—C42—C43—C	C41—C42—C43—C44	
C4—C5—C6—C61	-125.36 (17) C42—C43—C44—C45		245	0.1 (3)
C1—C2—C7—O1	128.28 (19) C42—C43—C44—F3		73	-178.32 (19)
C3—C2—C7—O1	-110.4 (2) F3—C44—C45—C4		6	178.73 (19)
C1—C2—C7—C5	-58.06 (19)	-58.06 (19) C43—C44—C45—C46		0.3 (3)
C3—C2—C7—C5	63.24 (18)	C44—C45—C46—C	C44—C45—C46—C41	
C6—C5—C7—O1	-125.73 (19)	C42—C41—C46—C	C42—C41—C46—C45	
C4—C5—C7—O1	111.4 (2)	C4—C41—C46—C4	C4—C41—C46—C45	
C6—C5—C7—C2	60.57 (19)	N1—C6—C61—C62	N1—C6—C61—C62	
C4—C5—C7—C2	-62.32 (17)	C5—C6—C61—C62	C5—C6—C61—C62	
N1—C1—C11—C16	-28.4 (3)	N1-C6-C61-C60	N1-C6-C61-C66	
C2-C1-C11-C16	91.1 (2)	C5—C6—C61—C66	C5—C6—C61—C66	
N1—C1—C11—C12	150.81 (19)	C66—C61—C62—C	C66—C61—C62—C63	
C2-C1-C11-C12	-89.7 (2)	C6—C61—C62—C6	C6—C61—C62—C63	
C16—C11—C12—C13	0.6 (3)	C61—C62—C63—C	C61—C62—C63—C64	
C1—C11—C12—C13	-178.6 (2) C62—C63—C64—F4		74	-179.1 (2)
C11—C12—C13—C14	0.4 (4) C62—C63—C64		265	1.3 (4)
C12—C13—C14—C15	-1.2 (4)	C63—C64—C65—C	C63—C64—C65—C66	
C12—C13—C14—F1	178.0 (2)	F4—C64—C65—C6	F4—C64—C65—C66 C64—C65—C66—C61 C62—C61—C66—C65 C6—C61—C66—C65	
F1-C14-C15-C16	-178.3 (2)	C64—C65—C66—C		
C13—C14—C15—C16	0.8 (4)	C62—C61—C66—C		
C12—C11—C16—C15	-1.0 (3)	C6—C61—C66—C6		
C1—C11—C16—C15	178.22 (19)	C61—C6—N1—C1	C61—C6—N1—C1	
C14—C15—C16—C11	0.3 (3)	C5—C6—N1—C1	C5—C6—N1—C1	
N2—C3—C31—C36	159.61 (16)	59.61 (16) C11—C1—N1—C6		-176.23 (16)
C2—C3—C31—C36	-78.5 (2)	C2—C1—N1—C6		61.3 (2)
N2—C3—C31—C32	-21.9 (2)	C41—C4—N2—C3	C41—C4—N2—C3 171.1	
C2—C3—C31—C32	100.0 (2)	C5—C4—N2—C3	C5—C4—N2—C3 -63.87 (18)	
C36—C31—C32—C33	1.3 (3)	C31—C3—N2—C4		-170.94 (14)
C3—C31—C32—C33	-177.17 (18)	C2—C3—N2—C4		64.88 (18)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —	н Н…А	$D \cdots A$	D—H…A
C15—H15…F4 ⁱ	0.93	2.52	3.254 (3)	136
C3—H3···O1 ⁱⁱ	0.98	3 2.56	3.358 (2)	138
N2—H1A····O1 ⁱⁱⁱ	0.86	5 (2) 2.53 (2)	3.292 (2)	148 (3)
N1—H2A···Cg3 ^{iv}	0.89	2 (2) 2 .70 (3)	3.549 (3)	160 (2)
C36—H36…Cg2 ^v	0.93	2.81	3.696 (3)	160
C42—H42···Cg1 ^v	0.93	2.78	3.651 (3)	157
C45—H45···Cg3 ⁱⁱⁱ	0.93	2.65	3.494 (3)	151

Symmetry codes: (i) -x, -y+2, -z; (ii) -x+1/2, y-1/2, -z+1/2; (iii) x, y-1, z; (iv) -x, -y+1, -z; (v) -x+1/2, y+1/2, -z+1/2.

